
Finding Logic Bugs in Graph Stores via Label Partitioning
Matteo Kamm

ETH Zurich
Switzerland

matkamm@student.ethz.ch

Mike Marti
ETH Zurich
Switzerland

mikmarti@student.ethz.ch

ABSTRACT
Graph databases store data as properties of graph structures and
allow nodes and their relationships to be queried efficiently. With
the rise of social networks and big data, graph databases have gained
popularity because they allow the storage and querying of highly-
connected data. Like with traditional database software, such as
Relational Database Management Systems, graph databases can be
affected by logic bugs, causing them to compute an incorrect result
for a given query. Detecting faults and ensuring the correctness of
such Graph DatabaseManagement Systems is of utmost importance.
In this report we present a new metamorphic testing approach
called Label Partitioning which we implemented for the Graph
DatabaseManagement SystemNeo4J. The idea of Label Partitioning
is to select nodes and their neighborhood based on an identifier
in an initial query. Individual queries are then performed to select
proper disjoint subsets of the initial query result to see whether the
partitioning invariant holds for the Database Management System.
So far our prototype has not found any bugs. We believe that by
adjusting the parameters or by refining the current oracle, e.g.
by adding WHERE clauses to increase the query complexity, this
approach has the potential to find a multitude of bugs in Graph
Database Management Systems.

1 INTRODUCTION
Graph Database Management Systems (GDBMS) introduce a novel
way of storing data as part of graph structures. In recent years,
the popularity of such systems has increased drastically due to
their applicability in social networks and big data. One such well-
established Java based implementation is Neo4J. Neo4J is based
on the so called Property Graph Model which organizes data as
part of nodes, relationships and properties. Nodes hold data in the
form of key-value pairs (called properties). Furthermore, nodes can
be assigned multiple labels that are used to classify them. A core
concept of graph databases are the directed edges between nodes
(also called relationships). In most applications those relationships
are the main entity that one wants to express using a graph data-
base. Similarly to nodes, relationships can also have properties and
labels. In Figure 2a a simple graph modelling the entities person,
technology and company as well as their relationships is depicted.
For instance, the person with the name property Jennifer likes the
technology of type graphs and she works for the company named
Neo4J. Michael works for the same company as Jennifer until the
year 2022.

Previous work has proposed oracles specific to RDBMSs and
found a substantial amount of bugs. However, those do not utilize
invariants present only in graph datases for testing. This lead us
to believe that, by using graph database invariants, we would be
able to find similar faults. As part of our work, we introduce the
software prototype GDBLancer that is able to test the Neo4J graph

Figure 1: Example of a graph generated by GDBLancer

database via the Label Partitioning test oracle. The purpose of this
prototype is to find logic bugs in the query processor that leads
to incorrect result sets. We consider a result set to be incorrect, if
a record is not fetched even though it should be returned by the
query or if a record is incorrectly included.

The core idea of the Label Partitioning oracle is to have a method
that focuses on testing the correct selection of connected nodes
in the graph stored by the database. The reason for our focus on
this specific part of graph databases, is because it is one of the
main features and advantages of GDBMSs compared to traditional
RDBMSs. Therefore, it is of high importance that this frequently
used part of the Database Management System is free of errors.

To get a better understanding of how the oracle works, we will
briefly explain it using an example. Consider a randomly chosen
label 𝑙 ∈ 𝐿 where 𝐿 is the set of all available labels of the graph.
The oracle executes a query𝑄 , which computes a set of all nodes𝑉𝑙
with label 𝑙 as well as their incident relationships and neighboring
nodes. We call this result set 𝑅𝑆 (𝑄). In our example 𝑙 = 𝑃𝑒𝑟𝑠𝑜𝑛

and Figure 2a depicts the result set 𝑅𝑆 (𝑄). In that case 𝑉𝑙 is made
up of the nodes representing Michael 𝑣𝑀 and Jennifer 𝑣 𝐽 , i.e. 𝑉𝑙 =
{𝑣𝑀 , 𝑣 𝐽 }. The oracle then computes the neighbors and incident
relationships for each node 𝑣 ∈ 𝑉𝑙 individually, which gives us the
result sets 𝑅𝑆 (𝑄𝑣𝑀 ) and 𝑅𝑆 (𝑄𝑣𝐽 ) for both 𝑣𝑀 and 𝑣 𝐽 respectively.
A depiction of their result set can be seen in the Figures 2b and
2c. It then uses the union operator ∪ to determine whether or not
𝑅𝑆 (𝑄𝑣𝑀 ) ∪ 𝑅𝑆 (𝑄𝑣𝐽 ) = 𝑅𝑆 (𝑄). If this equivalence does not hold,
there is at least one query 𝑄 ′ that collected either too many or not
enough neighboring nodes / incident relationships, which means
that the query processor of the GDBMS that is being tested has a
bug when executing query 𝑄 ′.



Matteo Kamm and Mike Marti

Person
name: Michael

Company
name: Neo4j

Technology
type: Graphs

Person
name: Jennifer

:IS_FRIENDS_WITH
since: 2018

:WORKS_FOR:LIKES

:WORKS_FOR
until: 2022

(a) Result of query𝑄 .

Person
name: Michael

Company
name: Neo4j

Person
name: Jennifer

:IS_FRIENDS_WITH
since: 2018

:WORKS_FOR
until: 2022

(b) Result of query𝑄𝑣𝑀 .

Person
name:Michael

Company
name: Neo4j

Technology
type: Graphs

Person
name: Jennifer

:IS_FRIENDS_WITH
since: 2018

:WORKS_FOR:LIKES

(c) Results of query𝑄𝑣𝐽 .

Figure 2: Results of the example queries.

To have an executable implementation of the Label Partition-
ing test oracle, we developed the GDBMS testing infrastructure
GDBLancer. Its purpose is to generate a random graph, store this
graph in a graph database and then execute the user specified test
oracle. Generating random graphs can be achieved as follows: First
generate a set of labels, relationship types and a unique set of avail-
able properties for each label and relationship type respectively.
These sets are then used as input to generate a random in-memory
graph. At this point the graph is still independent of the GDBMS
and therefore it would be possible to store the graph on different
graph database implementations. An example of such a random
graph saved on a Neo4J database can be seen in Figure 1.

We have executed the Label Partitioning oracle for several hours
on different graph sizes using the GDBLancer testing infrastructure.
So far, no bugs have been found. We are, however, optimistic that
by running the oracle for an extensive period of time, by applying
small tweaks to the oracle itself and by adding support for other
Graph DatabaseManagement Systems, the Label Partitioning oracle
has the potential to find a multitude of bugs.

Metamorphic test oracles [2] that are based on the concept of
Query Partitioning [8] have already been used to successfully find
logic bugs in RDBMSs. However, the detection of logic bugs in
GDBMSs has not yet been researched in great detail and existing
papers do not use a Query Partitioning approach for their test ora-
cles. In summary, this paper establishes the following new concepts:

• GDBLancer, a lightweight and extensible GDBMS testing
infrastructure.

• Label Partitioning, a GDBMS specific testing oracle that is
based on the concept of Query Partitioning.

• An evaluation of how Label Partitioning can be expanded
to find logic bugs in GDBMSs.

2 BACKGROUND
Graph Database Management System. Graph Database Manage-

ment Systems [3, 7, 9] have become more popular with the rise
of social networks and big data in recent years. Storing data as

part of graphs can be a more optimal way to model data storage
for certain applications. Another key advantage over traditional
data storage methods such as relational tables, is that related data
might be processed with higher performance. GDBMSs are often
schema-less, meaning that the data does not have to adhere to a
fixed strucutre. This allows software systems to evolve over time
without having to think about the schema changes and data migra-
tions. In the model of graph databases, the data is stored as part
of the nodes and edges that describe relationships between nodes.
Contrary to Relational Database Management Systems, where data
related to the connection of two entities has to be modeled as an in-
termediate table, Graph Database Management Systems treat edges
as first-class citizens, meaning that data can be directly stored as
part of an edge itself. Instead of SQL, GDBMSs use domain specific
query languages with a syntax that allows for easy selection of
nodes and their corresponding relationships.

Neo4J. Neo4J [9] is a widely used Graph Database Management
System implemented in Java and is based on the Property Graph
Model. In this model the data is organized as nodes, relationships
and properties. Nodes are tagged with labels that can be used to
describe their roles in the problem domain. Attached to nodes are
properties in the form of key-value pairs. Relationships connect
two nodes and have a direction as well as a type. Just like nodes,
relationships can have properties in the form of key-value pairs.
The standardized query language used by Neo4J is called Cypher
[4]. Cypher is based on ASCII art which makes the syntax easy to
read and understand. Furthermore, Cypher is a so called declarative
query language which means that a user simply describes what he
wants a query to return / update and not how the data should be
retrieved / updated. So far GDBLancer only supports Neo4J but it
was written in a generic way and it is possible to support other
GDBMSs.

Metamorphic testing. Metamorphic testing [2] is a testing tech-
nique that can be used to generate new testcases based on a meta-
morhpic relation and previously known inputs and outputs of a



Finding Logic Bugs in Graph Stores via Label Partitioning

system. An example for such a relation for a program that calculates
the sine value is sin(𝑥) = sin(𝑥 +2𝜋). One can generate a follow-up
test case to establish that the relation holds based on the result of a
previous test case. The Label Partitioning oracle proposed in our
work uses the metamorphic testing approach by first generating
some query and computing its result set. It then splits the query
into multiple smaller ones and expects the union of their disjoint
result sets to be the same as the initial result set.

Query Partitioning. Query Partitioning [8] is a technique to find
logic bugs in Database Management Systems. The main idea is to
derive 𝑛 individual queries 𝑄1, . . . , 𝑄𝑛 from a given query 𝑄 and
a corresponding result set 𝑅𝑆 (𝑄), each of which computes partial
result 𝑅𝑆 (𝑄𝑖 ). Using a predefined composition operator •, it is then
possible to check the equivalence of the composed partial results
and 𝑅𝑆 (𝑄), i.e. 𝑅𝑆 (𝑄1) • . . .•𝑅𝑆 (𝑄𝑛) = 𝑅𝑆 (𝑄). Whether or not this
is the case determines the correctness of the Database Management
System. The goal is to find queries that trigger different execution
strategies to find inconsistencies in the query processor of the
Database Management System.

3 APPROACH
This section contains information on how GDBLancer uses the
Label Partitioning test oracle to find bugs in GDBMSs.

3.1 Overview
Figure 3 illustrates the steps of running the Label Partitioning
oracle. First, it creates a random in-memory graph with random
nodes, relationships, labels and relationship types (see step 1 ).
Based on the label of a node, we then assign random properties
(key-value pairs) to nodes. This is to ensure that a certain set of
properties is available on nodes with a fixed label. In step 2 the
in-memory graph data structure is saved as a graph into a database.
Only now does the software become Graph Database Management
System specific. The following steps 3 to 5 execute the Label
Partitioning on the Neo4J database. A label 𝑙 is chosen at random
and all nodes 𝑉𝑙 with label 𝑙 are selected. Then all relationships 𝑅
that are incident to any vertex of 𝑉𝑙 and all neighboring nodes 𝑁
of 𝑉𝑙 are queried. So far the oracle performed the initial queries
that are needed to establish the expected behaviour. Step 5 can
be seen as the partitioning step where for each pair of 𝑁 × 𝑅 we
select their relationship and remove the found nodes from 𝑁 and
𝑉𝑙 with respect to multiplicity. Finally, the sets 𝑁 and 𝑅 should be
empty and there should not have been an attempt to remove any
node or relationship too often.

3.2 Random Graph Generation
In step 1 a random in-memory graph is generated. This genera-
tion happens in two steps: First a graph structure exhibiting several
predefined properties is created, then a random in-memory graph
is generated based on that structure. Such a structure contains the
following important components:

• A set of random labels 𝐿.
• A mapping 𝜆 between labels and sets of random unique

property types. This ensures that nodes with a label can
contain only a finite set of unique properties.

• A set of relationship types 𝑅𝑇 .
• Amapping 𝜌 between relationship types and sets of random

unique property types. This again ensures that relationships
of a type are only assigned unique properties of a finite set.

In a next substep the random graph is generated in-memory.
In order to do so we first determine the amount of nodes 𝑛 as a
random integer in a configurable interval [𝑛𝑙 , 𝑛𝑢 ]. Then for each
of the 𝑛 nodes exactly one label out of 𝐿 is selected at random.
Based on the selected label 𝑙 the set of assignable properties 𝜆(𝑙) is
determined and a subset of those is picked and instantiated with
random values. For each pair of nodes of𝑉 ×𝑉 an edge gets created
with a configurable probability. Each edge 𝑒 of the in-memory graph
is assigned a random relationship type 𝑟 ∈ 𝑅𝑇 . Based on 𝑟 a subset
of 𝜌 (𝑟 ) is selected and instantiated to determine the properties of
the edge 𝑒 .

3.3 Neo4J Generation
Up until now the implementation is GDBMS independent meaning
that this code can be reused for any graph database. This would
allow GDBLancer to be extended to support other GDBMSs in the
future. See section 4 for more details. In step 2 we generate Neo4J
specific queries to insert the in-memory graph into an actual graph
database. To do so, the nodes are first serialized as property strings
and inserted one by one into the database. Neo4J assigns a unique
id to each node which will be used to then generate the edges on
the database. Relationships are serialized in a similar fashion and
the endpoints of an edge are identified based on their Neo4J id.

3.4 Label Partitioning
Steps 3 to 5 perform the Label Partitioning. Note that the
steps 1 and 2 were independent of the testing method and are
executed even if a different kind of oracle is chosen. It would even be
possible to change the testing oracle at runtime to trigger possible
bugs on the System Under Test. Label Partitioning proceeds in the
following important steps:

(1) First a random label 𝑙 ∈ 𝐿 is chosen and the nodes with
label 𝑙 are selected. We call the set of all these nodes 𝑉𝑙 .

(2) Then the 1-hop neighborhood of the nodes with label 𝑙 is
selected. This gives us a list of ids of nodes and relationships
that are contained within this neighborhood. This list of
ids respects multiplicity meaning that nodes (relationships)
that adjacent (incident) to two or more nodes with label 𝑙
are counted multiple times. An example of this can be seen
in Figure 3, where the node in the middle with label L1 is
the neighbor of two nodes with the selected label L0. As
a consequence, nodes with label 𝑙 can also be part of this
1-hop neighborhood and therefore it is also possible to have
ids of such nodes in the list.

(3) For each node in 𝑉𝑙 we iterate over all relationships types
individually and issue a query, selecting the ids of all in-
cident edges of the currently processed relationship type,
as well as the ids of the adjacent nodes connected by these
edges. The selected ids are then removed from the list of
ids computed in the second step.



Matteo Kamm and Mike Marti

1 Randomly gen-
erate an in-
memory graph

2 Save graph
in a Neo4J
database

3 Select nodes 𝑉𝑙
with random
label 𝑙

4 Select relation-
ships 𝑅 and
nodes 𝑁 in the
1-hop neigh-
borhood of 𝑉𝑙

5 Partition based
on 𝑁 × 𝑅

L3

L1L0

L7

L0

L1

L1

L7

L5

L0

L0

CREATE (:L0 {key: 'value'})
CREATE (:L1 {key: 'value'})

...

L3

L1L0

L7

L0

L1

L1

L7

L5

L0

L0

L3

L1L0

L7

L0

L1

L1

L7

L5

L0

L0

L1L0

L1

L0L1

L1

L7

L5

L0

L0

Figure 3: Overview of the approach implemented in GDBLancer.

(4) After performing the previous step on all nodes with label 𝑙 ,
all neighbors and relationships of the 1-hop neighborhood
should have appeared exactly as often as they were selected
in the second step. The list of ids is expected to be empty
and there should have never been an attempt to remove an
id that was not present in the list.

3.5 Technical difficulties
The main technical difficulty occured during the early stage of
the development phase. Neo4J can be used in two different ways:
As an external server which is accessed over a binary protocol
supported by a Java driver or as an embedded server which runs in
the same JVM as the application accessing it. As the name suggests,
the embedded version is useful for systems where the database and
application run on the same device and no other application needs
to access the graph database. The problem is that these two versions
have entirely different APIs and cannot be exchanged freely. This
meant that we had to decide on the version we want to use early on
without knowing about the possible consequences. In the end, we
decided to use the embedded version as it does not require the user
to setup an external database which is convenient. One downside
of this decision was that the API description was lacking a lot of
cruicial information and it was challenging to access the embedded
database itself to investigate whether our application worked as
intended. To do so we had to copy the generated database files into
a directory and import the database into an existing Neo4J server.

4 IMPLEMENTATION
We implemented GDBLancer in Java and 980 lines of code. In this
section we explain the most significant implementation decisions
taken when developing the GDBLancer application.

Extensibility. One of the main non-functional requirements that
we tried to satisfy during the development of GDBLancer was the
extensibility with regards to adding support for additional GDBMSs
and new test oracles. To achieve this, instead of directly generating

the database graph, we implemented an in memory graph datastruc-
ture that supports the most important features found in property
graphs. Due to this design decision, it was possible to completely de-
couple the random generation of the graph and all database specific
parts of the application. The oracle implementations are decoupled
from the driving code that calls them via interfaces.

Logging. To be able to recreate bugs found by the oracle, the
GDBLancer application uses a logging library to save all executed
queries. The oracles perform a lot of queries during their execution,
which reduces the performance of the application and increases
the size of the logfile significantly. To mitigate this performance
issue, we allow the user to specify whether the system should log
all messages or only the important queries i.e. the graph creation
queries and those that trigger a bug. In order to do this we buffer
logged messages in an intermediate data structure. Calling the
logging framework only happens when an exception is thrown
and the appropriate reporting flag is set. This gives us fine-grained
control over which queries are written to logfiles and which can be
safely ignored.

Probabilities and bounds. The graph generation process uses
constant probabilities, as well as lower and upper bounds. These
values are used to, for example, give a bound on how many nodes
the graph should have or specify how prevalent edges should be.
To be able to easily manipulate them during the evaluation phase,
we decided to declare them as constants inside a dedicated class.

Supported property types. Neo4J supports different data types for
the values of properties. GDBLancer supports long, String and
double properties. The reason why we support these three types
in particular is because they are easy to generate random values
for and because they are among the most basic types, which makes
them likely to be available in all GDBMSs.



Finding Logic Bugs in Graph Stores via Label Partitioning

5 RESULTS
As part of this project, we implemented the prototype GDBMS
testing infrastructure GDBLancer. This infrastructure includes the
Label Partitioning test oracle. During the evaluation process we
executed the Label Partitioning oracle on a Neo4J database using
three different random graphs, each of which was generated using
different probabilities and bounds. All of these executions ran for
about 3 hours each.

Infrastructure. The experiments were conducted using a com-
puter with a 4-core Intel i7-4790K CPU at 4.00 GHz and 16 GB
of DDR3 memory at 1600 MHz running on an Archlinux 5.12.6
distribution. We used the embedded Neo4J database with version
number 4.2.5 for all experiments.

Bugs found. So far, no bugs have been found. We assume that
this is due to one or a combination of the following reasons:

• Neo4J is one of the most popular Graph Database Manage-
ment Systems. As such, a lot of bugs are already found by
their enormous user base. As a result, the query proces-
sor of Neo4J is probably one of the most robust when it
comes to GDBMSs, which means that finding new bugs is
challenging and improbable.

• The Label Partitioning test oracle in its implemented form
in the GDBLancer prototype is unlikely to trigger different
execution strategies during the evaluation of its queries.
This is because we use the default generated identifier in the
Label Partitioning oracle, which by default is not indexed
in Neo4J. If this execution strategy is faulty, it will perform
the error in both the original query, as well as the partial
queries. Even though the result sets are wrong, they will
be equivalent and the the oracle therefore does not detect
this bug.

• Due to the limited time frame of this project, we were not
able to run the oracle as much and as long as we would have
wanted to. It is possible that the current implementation of
the Label Partitioning test oracle is able to find bugs when
it is executed for a longer duration of time.

• GDBLancer only generates one graph database per run
and this might limit the search space drastically. Perhaps, it
would therefore be beneficial to generate multiple databases
per execution although this would decrease the perfor-
mance of the application.

6 RELATEDWORK
This section contains information about work that is related to the
approach presented in this paper.

Metamorphic testing of DBMSs. There has already been research
conducted in the field of automatic metamorphic testing of Rela-
tional DatabaseManagement Systems. One such example is SQLancer
[8]. SQLancer uses a metamorphic testing approach to detect logic
bugs in the query processor of various RDBMSs. It is also the main
inspiration for our work. The concept of Query Partitioning, which
the Label Partitioning oracle is based upon, was first proposed in
their paper. They used the concept to develop the Ternary Logic

Partitioning (TLP) oracle, a basic version of which we also imple-
mented in a first iteration of GDBLancer. They were able to detect
over 100 bugs using this approach in multiple different RDBMSs.
This is also the reason why we believe that their technique can be
effective when applied to GDBMSs.

Model-based testing of GDBMSs. There has already been research
conducted in the field of model-based testing of graph databases
[1, 5]. These systems are not only able to find functional faults
in the queries they execute, but they can also detect errors in the
evaluation mechanism of the graph database itself. The downside
to this approach is that model-based testing requires a system and a
model describing that system. It is thus more tailored towards test-
ing the database logic of business applications rather than testing
the graph database system itself.

Random generation of graphs. Some approaches have been pro-
posed to speed up the process of generating graph structures [6].
These algorithms highly benefit from multicore parallelism and
GPU optimized code. The current graph generator used inGDBLancer
is rather simplistic and was not optimized in any way. Using a more
efficient algorithm would allow us to generate larger graphs and
certain bugs might show themselves only in conjunction with very
large data sets.

7 CONCLUSION
In this paper we have presented a novel testing method called Label
Partitioning to find logic bugs in the query processor of Graph
Database Management Systems. This testing oracle builds on the
concept of Query Partitioning, where an existing query is split
into multiple individual ones, each of which computes a disjoint
subset of the original result set. The disjoint union of the result
sets of these queries is then expected to be the same as the result
set of the initial query. Label Partitioning heavily relies on the
fact that connected data can easily be queried in graph databases.
In addition, we present a testing infrastructure called GDBLancer,
which consists of a random graph generator and an implementation
of the Label Partitioning oracle. The application is implemented in a
way that allows for high extensibility with regards to new GDBMSs
and test oracles. For instance, one could save the in-memory graph
representation to a different GDBMS with minimal effort, since the
core of the application is written in a generic fashion.

The implemented infrastructure in its current state is a proof
of concept and only tests Neo4J. Adding support for additional
GDBMSs, introducing new test oracles and improving the perfor-
mance through parallelism would be prime examples of how the
current system can be improved upon. Similarly, the current im-
plementation of the Label Partitioning test oracle can be expanded
by adding constraints on the selected nodes and edges to make the
queries more complex and thus cover a wider range of possible
query executions.

ACKNOWLEDGMENTS
We thank Manuel Rigger for his support and helpful feedback
throughout the entirety of the project.



Matteo Kamm and Mike Marti

REFERENCES
[1] Raquel Blanco and Javier Tuya. 2015. A test model for graph database applications:

an MDA-based approach. In Proceedings of the 6th International Workshop on
Automating Test Case Design, Selection and Evaluation. 8–15.

[2] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:
a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[3] Facebook, Inc. 2021. GraphQL. Working Draft, May. 2021. Online at https:
//spec.graphql.org/.

[4] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. 2018. Cypher: An evolving query language for property graphs. In

Proceedings of the 2018 International Conference on Management of Data. 1433–
1445.

[5] Leen Lambers, Sven Schneider, and Marcel Weisgut. 2020. Model-Based Testing
of Read Only Graph Queries. In 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 24–34.

[6] Sadegh Nobari, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. 2011. Fast
random graph generation. In Proceedings of the 14th international conference on
extending database technology. 331–342.

[7] Rob Reagan. 2018. Cosmos DB. In Web Applications on Azure. Springer, 187–255.
[8] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via

query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[9] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

https://spec.graphql.org/
https://spec.graphql.org/

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Overview
	3.2 Random Graph Generation
	3.3 Neo4J Generation
	3.4 Label Partitioning
	3.5 Technical difficulties

	4 Implementation
	5 Results
	6 Related work
	7 Conclusion
	Acknowledgments
	References

