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ABSTRACT

Minimum Spanning Tree algorithms are among the most
well-known graph algorithms in computer science. They
can be used as part of a large variety of algorithms to
compute intermediate results and are applied in numer-
ous scientific fields. As such, having implementations
that can handle large inputs and compute the result in
a reasonable amount of time is of utmost importance.
In this paper, we look at a variety of work distribution
and merging strategies that can be used to implement
Bor̊uvka’s MST algorithm. We developed some imple-
mentations using a mixture of these strategies. To mea-
sure and compare the performance of these implemen-
tations, we performed benchmarks on the RACKlette
cluster and used the Parallel Boost Graph Library as
a baseline. Using these strategies, we were able to de-
velop implementations that are up to 32.6 times faster
compared to the baseline.

1. INTRODUCTION

In this section we briefly introduce and explain what
Minimum-Spanning-Tree algorithms are used for. In
addition, we describe our contribution to the scientific
community as well as work related to ours.

Formally, an MST of a given undirected connected
graph G = (V,E) with vertices V = {0, . . . , n− 1} and
weighted edges E ⊆ V ×V , can be defined as an ayclic
subgraph of G which connnects all vertices in V with
the least total weight.

Motivation. The MST problem is one of the most
studied problems in combinatorial optimization [1]. Al-
though the problem is rather simple, its solutions are
often used as part of other algorithms to compute in-
termediate results. Other scientific fields, such as epi-
demiology or taxonomy, apply MST algorithms as can
be seen in the following list of example problems.

• Networking MST algorithms find trees in com-
puter networks that can be used for broadcasting
without loops [2].

• 3
2 -approximate metric TSP By combining al-
gorithms that find MSTs, matchings and eulerian

circuits, one can develop a 3
2 -approximation al-

gorithm solving the metric traveling salesperson
problem [3].

• Molecular Epidemiology Minimum-Spanning-
Trees are used in molecular epidemiology research
to estimate relationships among individual strains
or isolates [4, 5].

• Machine Learning MSTs are used as part of
machine learning algorithms. For example, MSTs
can reduce the fraction of incorrectly labeled sam-
ples when performing brain MRI tissue classifica-
tion [6].

For most of these use cases, the speed of the MST algo-
rithm is of great importance e.g. to get quick medical
results and be able to treat the patient accordingly.

Contribution. In our research, we focus on the
MST algorithm proposed by Bor̊uvka [7, 8], which is
one of the most prominent MST algorithms as of today.
We implement this algorithm using different work dis-
tribution and merging strategies. Our implementations
use the Message Passing Interface (MPI) for commu-
nication. Randomly generated Kronecker graphs are
used to evaluate the performance of our implementa-
tion. In this paper we present a parallel MST imple-
mentation that performs significantly better than one
state of the art implementation.

Related Work. As the MST problem is very ver-
satile and can be used in various scientific disciplines,
there already is some research on parallelizing MST al-
gorithms. One such paper [9], which is also the main
inspiration of this project, evaluates how the perfor-
mance of Bor̊uvka behaves when using different pointer
jumping schemes. They also show that in principle a
speedup proportional to the number of processors can
be achieved. Other research limits itself on sufficiently
dense graphs and presents an algorithm for the bulk
synchronous parallel (BSP) model [10]. Furthermore,
a parallelization of the MST algorithm using GPUs is
presented in [11]. Some implementations that can be
found make use of wait-free Union Find data structures
[12]. Such data structures speed up the merge step of
the Bor̊uvka algorithm. However, they do not aid in



Algorithm 1 Bor̊uvka’s algorithm

T ← {}
while ∃ more than one connected component do

for each component c in T do
e← FindLightestOutgoingEdge(c)
T ← T ∪ e

end for
MergeComponents

end while
return T

distributing the work over multiple computing nodes.
Our research is similar to that of Chung and Con-

don [9], but differs in the work distribution strategies
applied. We do not, however, use the wait-free im-
plementations of those data structures as described in
[12].

2. BACKGROUND

In this section we formally introduce the MST problem,
as well as Bor̊uvka’s algorithm and different paralleliza-
tion strategies used in our implementations.

Spanning Tree/Forest. A spanning tree (forest)
is an acyclic (disconnected) subgraph T = (VT , ET ) of
an undirected graph G = (VG, EG), where VT = VG
and ET ⊆ EG. It is easy to see, that a spanning tree
for a graph G is not necessarily unique, i.e. there can
be more than one spanning tree of a graph. For in-
stance, the fully connected graph K3 has three span-
ning trees. For simplicity, we will use the term span-
ning tree throughout this report even though we might
be working with spanning forests in case G is not con-
nected.

Minimum-Spanning-Tree Problem. In the
MST problem, every edge e of the input graph G =
(V,E) has an associated weight. Formally, there is a
weight function w : E → N that is given as input. The
goal is to find a spanning tree with a minimum edge
weight sum, i.e. the edge weight of all other spanning
trees is at least as large. Just like with a spanning tree,
an MST must not necessarily be unique for a given
graph G.

Bor̊uvka’s Algorithm. Bor̊uvka’s algorithm [7, 8]
solves the MST problem as described above. Algorithm
1 contains a high-level overview of how the algorithm
operates. The algorithm terminates as soon as T is a
spanning tree. In case the input graph is not connected,
the termination condition has to be slightly adapted to
arrive at a forest. The sequential runtime isO(m log n),
where m = |E| and n = |V | of the input graph G =
(V,E).

Union Find Data Structure. A Union Find data
structure stores a partition of a set into disjoint subsets
in such a way, that finding the corresponding set of an
element and merging two sets takes O(α(n)) time [13].
These operations can be used to describe the connected
components in the algorithm 1. Note that the runtime
achieved here is not on a per-operation basis. Single
operations can take longer but the data structure ad-
justs itself so that successive operations are faster.

Pointer Jumping. Pointer jumping [14] (also re-
ferred to as path doubling) is a design technique that
allows an algorithm to follow a path using only logarith-
mic time with respect to the length of the longest path.
It does this by redirecting the parent pointers that de-
scribe the path, to point to the parent of the parent for
each vertex on the path simultaneously. This process
is then repeated until every vertex points to the root
of the path. This gives a O(n log n) runtime, where n
describes the amount of vertices on the path. This is
superior to simply iteratively fixing each vertex indi-
vidually, which has a potential worst case runtime of
O(n2).

Supervertex Pointer Jumping. Supervertex
pointer jumping [9] is an extension of pointer jump-
ing that uses randomness to achieve an expected lin-
ear time algorithm. The technique is best explained
in the aforementioned paper, but the high level idea
is to select a set of vertices to be supervertices, per-
form pointer jumping on all non-supervertices, until
they reach a supervertex or a root, let each supervertex
point to the next supervertex and repeat the process
recursively on the supervertices. After the recursion, it
is sufficient to perform only one more pointer jump for
all non-supervertices.

MPI. The message passing interface [15] is a stan-
dard for developing applications on parallel comput-
ing architectures. It defines library routines for inter-
core and inter-system communication. Similar to the
C++ standard, there is no reference implementation
but multiple open source projects implementing the
standard, such as MPICH and Open MPI [16].

Kronecker Graphs. Kronecker graphs are a class
of graphs constructed from a small base graph by it-
eratively applying the Kronecker product [17]. The
Graph500, a rating of supercomputer systems focus-
ing on graph algorithms, uses a variation of this graph
construction for their benchmarks [18].

3. APPROACH

This section contains information about the different
implementations developed, as well as other technical
details, such as distribution strategies and limitations.



(a) Original input graph (b) Edge distributed input graph (c) Vertex distributed input graph

Fig. 1: Graph distribution example

Distributing the Work. There are many ways
how a graph can be distributed among multiple compu-
tation units. The two strategies that we considered are
distributing the edges and distributing the vertices. A
combination of the two would also be conceivable, but
was not considered in this project. As these two strate-
gies have different parallelization capabilities, multiple
implementations for both of these approaches were de-
veloped.

Distribution by Edges. In this approach, the
edges of the input graph are distributed evenly among
computation units. An illustration of such a distribu-
tion can be seen in Fig. 1b. This strategy allows for
a uniform workload distribution, as every computation
unit has the same amount of edges to process when
selecting the minimum weight outgoing edges. On the
other hand, the merging of components cannot be par-
allelized using this approach. This is because during
the merging step, all vertices of a component have to
unanimously agree on a new leader. But since a ver-
tex is not owned by a computation unit, this cannot be
accomplished without additional effort.

Distribution by Vertices. In this approach, the
vertices of the input graph are distributed (including
their incident edges) among computation units. An
example of such a distribution can be seen in Fig. 1c.
One major disadvantage of this approach is that each
edge gets distributed twice because it is not guaran-
teed that neighboring vertices are assigned to the same
computation unit. Consequently, this strategy requires
more time to distribute the graph. Moreover, the work-
load of each computation unit is unevenly distributed
compared to the edge distribution strategy. Imagine
a scenario, where certain vertices have a higher degree
(amount of incident edges) than others. In that case
the computation of the minimum weight outgoing edge
of each component takes longer for some computation
units whilst others are idle. However, with this ap-
proach the merging of components can be parallelized.

Implementations. For this project we developed
various C++ implementations, combining different
merging approaches with the two aforementioned dis-
tribution strategies. The following list contains all the

combinations realized:

• Edge Distributed, merging via
– Union Find
– Union Find with reduced edges
– Pointer Jumping

• Vertex Distributed, merging via
– Union Find
– Iterative Vertex Fixing
– Pointer Jumping
– Supervertex Pointer Jumping

Clearly, this list does not contain every possible combi-
nation. Intermediate benchmarking showed that some
strategies were not promising enough to be pursued
further.

We are not going to give detailed descriptions for
all implementations, as their rough idea should be clear
with the information given in section 2. The ones
that might not be self-explanatory are Edge Distributed
Union Find with reduced edges and Vertex Distributed
Iterative Vertex Fixing. The first one uses an addi-
tional optimization where edges with both endpoints
in the same component get skipped over. As this re-
moval costs additional runtime, we have to be cautious
about the impact on performance. The second one uses
an iterative fixing of the vertices, briefly mentioned in
the pointer jumping paragraph in section 2. This ap-
proach has a greater theoretical runtime, but uses far
less communication compared to the vertex distributed
pointer jumping implementation. The open question
here is, whether the lower runtime guarantee is worth
the additional communication. This is answered in sec-
tion 4.3. In addition, the Union Find implementations
use the so-called path compression strategy when per-
forming find() operations and we merge sets by rank
during union() calls [19].

Baseline Implementation. To get an idea of how
well our implementations perform, we decided to use
the Parallel Boost Graph Library (BGL) [20] as our
baseline. We considered other baseline implementa-
tions but came to the conclusion that the Parallel BGL
is the most optimized and well-known library. One
promising implementation uses OpenMP which might
have led to incomparable results since we use MPI [21].



Kronecker Graph Generator. Initially, we ex-
perimented with different kinds of graphs and imple-
mented some generators for them, but ultimately de-
cided to only benchmark Kronecker graphs. Self-writ-
ten generators can be error-prone and it is difficult to
efficiently generate large graphs. Therefore, we decided
to use the reference implementation of the Graph500
specification. An alternative to this is the Erdös-Renyi
graph generator that is part of the Parallel BGL [20].
To get reproducible benchmark results across all algo-
rithm executions, we seeded the graph generator, so
that it always generates the same random graph.

Communication. All implementations use MPI
as a communication protocol. Besides send and receive
routines used to distribute the graph, we also use scat-
ter, gather and reduction functionalities. To minimize
the cost of communication as much as possible, we keep
the amount of MPI subroutine calls to a minimum. We
achieve this by first locally preparing the data and then
sending it in bulk. This is used to e.g. more efficiently
distribute the incident edges in all vertex distributed
implementations.

Limitations. So far all implementations don’t com-
pute the actual MST, but only its edge weight sum.
Moreover, the work has to be distributed among all
computation units evenly, i.e. the amount of edges
or vertices must be divisible by the amount of com-
putation units depending on the distribution strategy.
For most implementations, both of these limitations
are straightforward to resolve. This is especially true
for the MST tree computation, as the lightest edges are
distributed among the computation units anyway.

Correctness. To verify the correctness of our algo-
rithms, we perform unit tests using Catch2. On top of
that, we perform differential tests with large Kronecker
graphs that compare our implementations to the base-
line (parallel BGL). To get assurance during develop-
ment, we use continuous integration that executes the
tests and reports potential failure.

4. EXPERIMENTAL RESULTS

In this section we go over the benchmarking setup, as
well as the results that we measured, including their
interpretation.

4.1. Experimental Setup

The benchmarks were executed on the RACKlette clus-
ter [22], setup and maintained by a group of students
from ETH.

Hardware. The RACKlette cluster consists of four
identical nodes, each of which has two 64-core AMD
EPYC 7742 CPUs running at 2.25GHz with 512GB

DDR4 3200MT/s RAM and four Nvidia Tesla V100
GPUs with 32GB GDDR5 VRAM for a total of 512
cores, 2TB of memory and 16 GPUs. The four nodes
are connected using a speedy interconnect from
Mellanox, namely HDR ConnectX-6 adapters for a
200Gbit/s connection.

Work Allocation. All four cluster nodes were
used for the benchmarks. We pinned the CPU cores
with the purpose that the amount of used CPU cores
was equal on all nodes. In addition, the cores were cho-
sen such that the amount of cache overlap is minimized.
This allocation strategy should lead to more consis-
tent measurements, as otherwise benchmarks with a
low MPI core count could have an unfair advantage
due to less network communication.

Software. All benchmarks were conducted using
CentOS Linux release 7.9.2009 (Core) with Linux ker-
nel 3.10.0, the MPI implementation mvapich2 version
2.3.4 and Parallel BGL version 1.78.0. The code was
compiled with GCC version 10.3.0 using the compi-
lation flags -mavx -march=native -O3. Our results
are obtained using the performance measurement tool
LIKWID [23]. LIKWID uses hardware counters for its
measurements and can be invoked by simply marking
the code to be benchmarked.

4.2. Performed Benchmarks

As described in section 3, all benchmarks were per-
formed using Kronecker graphs. These graphs have 16
times more edges than vertices (as per Graph500 speci-
fication [18]). This is to ensure an average degree of 32.
The implementation Edge Distributed Pointer Jumping
resulted in bad performance. Since we are not certain
which part of the algorithm causes this, we decided to
not include it in our reported measurements.

Baseline Comparison. To compare our imple-
mentations with the baseline, we performed a strong
scaling comparison using graphs with 219 vertices. The
number of MPI processes were the powers of 2: 20, . . . , 26.
The baseline implementation did not allow us to go any
further than that because the execution took too long.
We believe this to be an implementation issue within
the parallel BGL.

Implementation Comparison. To compare our
implementations with each other, we performed a strong
and weak scaling comparison. The strong scaling com-
parison was performed using graphs with 220 vertices.
The number of MPI processes were the powers of 2:
20, . . . , 29. The weak scaling comparison was performed
using the configurations seen on the x-axis of Fig. 4.

Detailed Runtime Analysis. To get a better
understanding of which parts of the algorithms require
the most runtime, we performed fine-grained measure-
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Fig. 2: Strong scaling comparison with the baseline,
219 vertices

MPI processes Best impl. Parallel BGL

1 0.51679 12.76185
2 0.28577 9.31996
4 0.18393 5.38284
8 0.12564 3.42770
16 0.10462 2.61154
32 0.09486 2.39382
64 0.09639 2.38184

Table 1: Runtime results in seconds from strong scal-
ing comparison, 219 vertices

ments. We differentiated between graph distribution,
lightest edge selection and merging. This benchmark
was performed using 64 MPI processes and a graph
with 219 vertices.

Summarizing Results. As we are working with
runtimes, the arithmetic mean is the obvious choice for
summarization. The results for one algorithm execu-
tion were summarized by taking the maximum runtime
of any MPI process. To get a summary over all algo-
rithm iterations, an arithmetic mean was computed.

Repetitions. We collected measurements until the
90% confidence interval was within 5% of our reported
means. This was achieved by performing 10 repeti-
tions in all benchmarks, where the first execution is
discarded due to warmup.

4.3. Results

This section contains the results of the performed bench-
marks, including an analysis.

Baseline Comparison. The results of the strong
scaling comparison for the baseline comparison are pre-
sented in Fig. 2. All our implementations exceed the
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Fig. 3: Strong scaling comparison without the base-
line, 220 vertices

performance of Parallel BGL when work is distributed
on 8 or fewer MPI processes. For more than 8 MPI
processes, only the edge distributed algorithms outper-
form the baseline. We verified that these results are
statistically significant by making sure that the 90%
confidence intervals do not overlap. An interesting ob-
servation is that Parallel BGL performs exceptionally
poorly for low MPI core counts, whilst our implementa-
tions are more consistent. Table 1 contains the absolute
runtimes of our best implementation, Edge Distributed
Union Find with reduced edges, and the baseline. The
best speedup of 9.31996s/0.28577s ≈ 32.6 was achieved
when using 2 processes.

Implementation Comparison. Fig. 3 contains
the results of our strong scaling comparison. As can
be seen, the edge distributed implementations outper-
form the vertex distributed implementations substan-
tially. All vertex distribution implementation perform
similarly apart from the supervertices pointer jumping
one which performs worse in comparison as the num-
ber of MPI processes increases. The reason for this is
explained in the fine-grained analysis. It is also worth
mentioning, that the standard deviation for all imple-
mentations is minuscule, except the one of the super-
vertex pointer jumping. This is most likely due to the
randomness of that merging strategy. Another interest-
ing point is that the edge distributed implementations
do not scale after reaching 16 MPI processes. As the ra-
tio between vertices and edges is exactly 1 : 16, it is not
surprising to see diminishing returns past 16 MPI pro-
cesses. This is because the lightest edge computation
communicates proportionally to the amount of vertices
of the input graph. After the 16 process threshold, the
communication outweighs the per-process work, result-
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Fig. 4: Weak scaling comparison, 218 – 222 vertices

ing in worse performance for increasing MPI processes.
More dense graphs might benefit from running on more
MPI processes. The weak scaling comparison of Fig. 4
shows a similar picture. In addition, the weak scaling
comparison indicates that the edge distributed imple-
mentations will perform better with a growing number
of processes and increasing number of vertices.

Detailed Runtime Analysis. Fig. 5 gives a
more detailed view and compares the runtime of the
algorithm parts. The work distribution is an immense
bottleneck for the vertex distributed implementations,
whereas it only makes up a small part of the total run-
time of the edge distributed implementations. An ex-
planation of this could be, that the edge distribution
implementations use an MPI_Scatter, potentially im-
plemented as a tree. In the vertex distribution imple-
mentations, the work is sequentially distributed by the
MPI process 0. The lightest edge selection performs
very similarly across all implementations. On the other
hand, the Union Find merging strategy outperforms all
others, except for the iterative vertex fixing approach.
Interestingly, this approach outperforms the other two
pointer jumping strategies, even though it has a worse
theoretical runtime. This result indicates that the addi-
tional synchronization required is not worth the tighter
theoretical runtime bound. The same holds for the su-
pervertex pointer jumping, the strategy requiring the
most synchronizations, which performed poorly in the
strong scaling comparison. In addition, the plot shows
that the large standard deviation of the Vertex Dis-
tributed Supervertex Pointer Jumping implementation
comes from the merge step. This strengthens the claim
made in the previous paragraph.
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5. CONCLUSIONS

As is evident from the benchmark evaluation in section
4.3, we outperform the Parallel BGL by a wide margin.
The best approach to distribute the work is the edge
distribution strategy. The merging strategy used by
the algorithm does not have a significant impact on the
performance. However, the Supervertex Pointer Jump-
ing performs the worst. In conclusion, we can say that
we achieved our goal and found approaches that per-
form better than one state of the art implementation.
The Parallel BGL is, of course, more sophisticated and
supports generic graph data structures as well as other
algorithms. The results we found are similar to those
of Chung and Condon [9] in that supervertex pointer
jumping performs worse than pointer jumping on struc-
tured and random graphs.

Future Work. Besides the obvious step of finding
new strategies and implementing more combinations,
a possible way on how to improve the current imple-
mentations is by resolving the limitations described in
section 3. In particular, storing the actual MST and
supporting all MPI configurations independent of the
input graph. Moreover, depending on graph properties,
such as the connectivity or the average degree, differ-
ent strategies could be applied at run-time. This would
require further, more-detailed measurements. Other
work could also try to benchmark different graph types,
for instance Erdös-Renyi graphs, and figure out which
graph properties influence the runtimes. Moreover, it
would be interesting to see if a parallelized merging
strategy using a wait-free Union Find data structure
[12] performs better than our current implementations.
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berto Cáceres, Henrique Mongelli, and Siang Wun

Song, “A parallel algorithm for minimum span-
ning tree on gpu,” in 2017 International sym-
posium on computer architecture and high per-
formance computing workshops (SBAC-PADW).
IEEE, 2017, pp. 67–72.

[12] Richard J. Anderson and Heather Woll, “Wait-
free parallel algorithms for the union-find prob-
lem,” in Proceedings of the Twenty-Third Annual
ACM Symposium on Theory of Computing, New
York, NY, USA, 1991, STOC ’91, p. 370–380, As-
sociation for Computing Machinery.

[13] Robert Endre Tarjan, “Efficiency of a good but
not linear set union algorithm,” J. ACM, vol. 22,
no. 2, pp. 215–225, apr 1975.
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