
Testing Graph Database Engines viaQuery Partitioning
Matteo Kamm

ETH Zurich

Switzerland

matteo.kamm@student.ethz.ch

Manuel Rigger

National University of Singapore

Singapore

rigger@nus.edu.sg

Chengyu Zhang

ETH Zurich

Switzerland

chengyu.zhang@inf.ethz.ch

Zhendong Su

ETH Zurich

Switzerland

zhendong.su@inf.ethz.ch

ABSTRACT
Graph Database Management Systems (GDBMSs) store data as

graphs and allow the efficient querying of nodes and their rela-

tionships. Logic bugs are bugs that cause a GDBMS to return an

incorrect result for a given query (e.g., by returning incorrect nodes
or relationships). The impact of such bugs can be severe, as they

often go unnoticed. The core insight of this paper is that Query

Partitioning, a test oracle that has been proposed to test Relational

Database Systems, is applicable to testing GDBMSs as well. The core

idea of Query Partitioning is that, given a query, multiple queries

are derived whose results can be combined to reconstruct the given

query’s result. Any discrepancy in the result indicates a logic bug.

We have implemented this approach as a practical tool named GDB-

Meter and evaluated GDBMeter on three popular GDBMSs and

found a total of 40 unique, previously unknown bugs. We consider

14 of them to be logic bugs, the others being error or crash bugs.

Overall, 27 of the bugs have been fixed, and 35 confirmed. We

compared our approach to the state-of-the-art approach to testing

GDBMS, which relies on differential testing; we found that it results

in a high number of false alarms, while Query Partitioning reported

actual logic bugs without any false alarms. Furthermore, despite

the previous efforts in testing Neo4j and JanusGraph, we found 18

additional bugs. The developers appreciate our work and plan to

integrate GDBMeter into their testing process. We expect that this

simple, yet effective approach and the practical tool will be used to

test other GDBMSs.

CCS CONCEPTS
• Information systems→ Database query processing; • Soft-
ware and its engineering→ Software verification and valida-
tion.

KEYWORDS
database testing, graph databases, test oracle, automatic testing

ACM Reference Format:
Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023.

Testing Graph Database Engines via Query Partitioning. In Proceedings of

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’23),
July 17–21, 2023, Seattle, WA, United States, https://doi.org/10.1145/3597926.3598044.

the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, United States. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3597926.3598044

1 INTRODUCTION
Graph Database Management Systems (GDBMS) [21, 28, 31] allow

storing and querying data as graphs. In recent years, the popularity

of such systems has increased drastically due to their applicabil-

ity in social networks, knowledge graphs [16], and fraud detec-

tion [35]. Examples of the most popular GDBMSs are Neo4j [10],

JanusGraph [6], RedisGraph [12], and Memgraph [9].

As with any other software, GDBMSs can be affected by various

kinds of bugs. A notorious category of bugs are logic bugs, which

are bugs that cause the GDBMS to compute an incorrect result.

For example, for a given query, a GDBMS might mistakenly omit a

vertex from the result set or include an edge that should not be part

of the result. Such bugs are difficult to detect by users and might

go unnoticed, especially considering the complexity of modern

GDBMSs (e.g., Neo4j has 468k LOC).

The state-of-the-art approach to testing GDBMSs, Grand [38],

is based on differential testing [27]. It generates a test case that is

sent to multiple GDBMSs; if the outputs disagree, at least one of

the systems is assumed to be affected by a bug. Grand found 21

previously unknown bugs in six GDBMSs, of which 18 bugs were

confirmed, 7 were fixed, and 2 were logic bugs. Despite its success

in finding bugs, differential testing has major drawbacks in this

context. GDBMSs support various query languages that differ in

syntax and semantics. Grand was realized for Gremlin, which many,

but not all GDBMSs support; for example, RedisGraph is a popular

GDBMS that lacks support for Gremlin.
1
Even for Gremlin, there

are many differences between different GDBMS implementations;

When evaluating Grand, we found that it is prone to false alarms, re-

quiring significant manual effort to analyze potential bug-inducing

test cases. As investigated in Section 5.2, for 1,000 randomly gen-

erated queries, 615 were considered as potential bugs by Grand;

we analyzed a random sample of 30 test cases and found that all

of them were false alarms. In the evaluation of the original paper,

the authors carefully analyzed 709 test cases exposing differences

between GDBMSs, among which they identified only 21 bugs.

Various approaches have been proposed to test Relational Data-

base Management Systems (RDBMS), which can also be affected by

logic bugs. The state-of-the-art test oracle for detecting logic bugs

1
See https://github.com/RedisGraph/RedisGraph/issues/274.

https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/3597926.3598044
https://github.com/RedisGraph/RedisGraph/issues/274

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

is Query Partitioning [30], which is based on the idea that from a

given query, multiple so-called partitioning queries can be derived,

each of which computes a part of the original query’s result. By

combining the partitioning queries’ results and comparing the com-

bined result with the original query’s result, discrepancies can be

located that indicate a bug in the DBMS. As a concrete instantia-

tion of this general idea, Ternary Logic Partitioning (TLP) [30] was
proposed. The key insight of TLP is that given an original query,

three partitioning queries can be derived, each of which contains an

additional filtering constraint based on a predicate 𝜙 . Based on the

insight that this predicate𝜙 evaluates to either TRUE, FALSE, or NULL
for a given context, three filter predicates 𝜙,¬𝜙 , and 𝜙 IS NULL
are applied, one of which should evaluate to TRUE for a given row.

TLP has been shown to be effective in testing RDBMS. However,

current TLP implementations are not applicable to GDBMS due to

the significant difference between RDBMS and GDBMS. Therefore,

it is not yet clear whether TLP is still effective in testing GDBMS.

Listing 1: An illustrative example of a logic bug found using
Ternary Logic Partitioning in Neo4j.

1 CREATE (:L {p:"test"})
2 CREATE INDEX FOR (n:L) ON (n.p)
3
4 MATCH (n:L)
5 RETURN COUNT(n) // c1 = 1
6
7 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p)
8 RETURN COUNT(n) // c2 = 0
9
10 MATCH (n:L) WHERE NOT (n.p STARTS WITH lTrim(n.p))
11 RETURN COUNT(n) // c3 = 0
12
13 MATCH (n:L) WHERE (n.p STARTS WITH lTrim(n.p)) IS NULL
14 RETURN COUNT(n) // c4 = 0
15
16 // TLP validates that c1 = c2 + c3 + c4

The key insight of this paper is that the high-level idea of Query

Partitioning, and specifically TLP, is applicable and effective in

finding logic bugs in GDBMSs and addresses the aforementioned

challenges. As a metamorphic testing approach, TLP checks for

inconsistencies within a single system. Thus, TLP can be applied to

various GDBMSs that might differ in syntax and semantics. Unlike

Grand, TLP does not raise any false alarms. For a fully automated

testing approach, TLP must be combined with a test case generation

approach. To this end, we propose a simple rule-based generator.

The core of the approach is a metamodel generator, which accounts

for the lack of schemas in some of the GDBMSs by creating and

using an internal schema.

Listing 1 shows an example of a bug that we found in Neo4j 4.6

using TLP. The first two CREATE statements in lines 1 and 2 set up

the database state. The first statement creates a new node with label

L and property p with value test. The statement in line 2 creates

an index on the newly created label-property combination. Lines 4

to 14 contain queries, each of which uses a MATCH clause that counts
the number of nodes. The first query in lines 4 to 5 is the original

query, which does not use a filter constraint. The three queries in

lines 7 to 14 are the partitioning queries. The first partitioning query

calculates the number of nodes with label L where the predicate

𝜙 evaluates to TRUE, the second where the predicate 𝜙 evaluates

FALSE and the last where the predicate 𝜙 evaluates to NULL. Since
the original query outputs 1 and the subsets are disjoint subsets

that partition the initial result, we would expect one of the other

three counts to be exactly one as well. In this case, however, all

other counts were zero, which indicates a logic bug.

We implemented the approach as a tool called GDBMeter. To

evaluate the effectiveness and generality of GDBMeter, we tested

the three well-established GDBMSs Neo4j, RedisGraph, and Janus-

Graph. We found 40 previously unknown bugs, of which 27 have

already been fixed and 14 are logic bugs. By logic bug, we mean

the GDBMS gives incorrect results without errors and warnings.

Note that Grand cannot be applied to test RedisGraph, as it lacks

support for Gremlin. Neo4j and JanusGraph were extensively tested

by Grand, which found 3 bugs in each of these GDBMSs, none of

which was a logic bug. Despite these efforts, we found and reported

18 additional bugs, 5 of which are logic bugs. In addition, the devel-

opers provided positive feedback on our work and plan to integrate

GDBMeter into their testing process. We compared GDBMeter to

Grand and found that Grand reports a large number of potential

bugs, the majority of which are false alarms, while the potential

bugs reported by GDBMeter do not have false alarms.

Overall, this paper makes the following contributions:

• It demonstrates how the Query Partitioning test oracle [30],

in particular, Ternary Logic Partitioning, can be applied on

GDBMSs to find logic bugs.

• It provides a comprehensive evaluation of the oracle on three

widely-adopted GDBMS, in which the technique found 40

new bugs.

2 BACKGROUND
Graph Database Management Systems. GDBMSs store and ma-

nipulate data as graphs. A directed graph𝐺 consists of vertices 𝑉

and edges 𝐸, which we denote as𝐺 = (𝑉 , 𝐸). The set 𝐸 is a subset of

𝑉 ×𝑉 and we can think of an edge (𝑣1, 𝑣2) = 𝑒 ∈ 𝐸 as a connection

that starts at 𝑣1 and ends at 𝑣2. Note that (𝑣1, 𝑣2) ≠ (𝑣2, 𝑣1) because
these are directed edges for which the order matters. GDBMSs are

often schema-less, meaning that data does not have to adhere to a

fixed structure. This allows software systems to evolve over time

without requiring schema changes and data migrations.

Labeled property graph model. The labeled property graph model

is one of two commonly used models in modern GDBMSs [36].

Neo4j, JanusGraph, and RedisGraph are examples of GDBMSs that

use the labeled property graph model. This model is a refinement of

the pure mathematical model described above. In the labeled prop-

erty graph model, vertices are commonly referred to as nodes and
edges as relationships. Nodes and relationships can have key-value

pairs attached. These pairs are named properties and are usually

specified using JavaScript Object Notation (JSON). Lastly, labels

can be used to mark nodes (relationships). Nodes (relationships) of

the same label belong together and form a subset of all the nodes

(relationships). Queries typically operate on these label sets for

performance reasons. Labels on relationships are also referred to

Testing Graph Database Engines via Query Partitioning ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

as relationship types. Contrary to RDBMSs, where data related to

the connection of two entities is modeled as an intermediate table,

GDBMSs treat edges as first-class citizens, meaning that data can

be directly stored as part of an edge itself.

Person

name: Michael

Company

name: Neo4j
Technology

type: Graphs

Person

name: Jennifer

IS_FRIENDS_WITH
since: 2018

WORKS_FORLIKES

WORKS_FOR
until: 2022

Figure 1: An example of a labeled property graph.

Figure 1 shows an example of a labeled property graph. The graph

consists of four nodes and four relationships. The Person node with
property name set to “Jennifer” has a relationship IS_FRIENDS_WITH
with the Person node named “Michael”. This relationship has a

property since that specifies since when this relationship exists.

Graph Database Query Languages. Unlike RDBMSs, which

commonly support the standardized Structured Query Language
(SQL), various common query languages for GDBMSs exist [14, 17].

Some GDBMSs also support multiple languages. The two most

prominent ones [36] are Gremlin [32], which is the graph traversal

language of Apache TinkerPop [3], and Cypher [22] which was

developed for Neo4j [10]. There has been an effort in making

Cypher an open standard called openCypher [11]. Neither of those

two languages is formally specified and they are therefore subject

to change [15].

Cypher. Cypher is a declarative query language that provides a

visual way of matching nodes and their relationships. The ASCII-

art syntax uses round brackets to represent nodes and arrows for

relationships. Listing 2 depicts an example of a Cypher query. It

selects all the movies that were directed by the person named “Tom

Hanks”. The fact that a person directed a movie is represented by a

label on the respective relationship.

Gremlin. Gremlin is a functional graph traversal language that

composes so-called Gremlin steps. The steps are the primitives of

the Gremlin graph traversal machine, which ultimately executes the

supplied queries. In total, there are approximately 30 such steps [4].

Listing 3 shows an example of a query written in Gremlin. First, we

select all the vertices that have the label “Person” and the property

name set to “Tom Hanks”. Then we follow all outgoing edges with

label “DIRECTED” and finally return all the vertices that we can

reach like this which have label “Movie”. The traversal-style is

noticeable in this example, since we specify a path through the

graph by calling a functional API.

Listing 2: An example of a Cypher query.

1 MATCH (:Person {name: "Tom

Hanks"})-[:DIRECTED]->(movie:Movie)↩→

2 RETURN movie

Listing 3: An example of a Gremlin query.

1 g.V()
2 .has("Person", "name", "Tom Hanks")
3 .outE("DIRECTED")
4 .inV()
5 .hasLabel("Movie");

Automated Testing. In this paper, we present a new and auto-

mated way of testing GDBMSs. Automated testing of GDBMSs

consists of two steps. First, an appropriate test case must be gen-

erated. For GDBMSs, this refers to statements creating a database

as well as a query that is subsequently validated. Various genera-

tion approaches have been proposed to test RDBMSs [18, 20, 23].

Importantly, a test oracle is required, which is the mechanism that

validates the result of a test case. In this work, we demonstrate how

TLP, an oracle originally proposed to test RDBMSs, is applicable to

testing GDBMSs.

3 APPROACH
In this paper, we propose an automated testing approach for

GDBMSs that we implemented as GDBMeter, a tool that automati-

cally detects bugs in GDBMS. The core of the approach is its test

oracle, called Ternary Logic Partitioning (TLP), which was previ-

ously proposed to test RDBMSs.

GDBMeter operates in three phases, as shown in Figure 2. In

step 1 , GDBMeter generates a metamodel that describes available

labels for nodes and edges as well as property names and their

respective types. Not every GDBMS provides support for schemas,

so the metamodel aims at generating coherent data by creating

and using an internal schema. Step 2 generates a random graph

based on the metamodel. Additionally, create, read, update, and

delete (CRUD) statements are randomly generated to create diverse

database states, some of which might enable triggering bugs. In

step 3 , a random query is generated and TLP is applied to validate

its result. If a logic bug is detected, GDBMeter reports the bug-

inducing test case to the user. Every logic bug reported by TLP is a

real bug, that is, no false alarms are reported.

3.1 Metamodel Generation
First, GDBMeter generates a so-called metamodel. The metamodel

encodes the available graph labels, properties, as well as their types.

This model addresses the challenge that some GDBMSs lack support

for schemas. Not using a schema would result in a large number of

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

Metamodel

Generator

Graph

Generator

Ternary Logic

Partitioning

State Gen-

erator

1

2

3

GDBMS

uses

Create database

Execute queries

Result set

Figure 2: GDBMeter first uses themetamodel generator to cre-
ate a metamodel, which is then used by the graph generator
and the test oracle. The graph generator uses the state gen-
erator to generate the actual graph using CRUD operations.
Finally, a query is generated and the test oracle is applied.
Any bugs that are identified during this step are reported to
the user.

meaningless queries as, for example, queries matching for random

labels would likely result in empty results.

Let 𝐿 be the set of valid identifiers for labels and properties for the

GDBMS under test. Let 𝑇 be the types supported by the GDBMS,

such as, strings, booleans, integers and points. The structure of

our metamodel 𝑀 is a 4-tuple (𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸), where 𝐿𝑉 , 𝐿𝐸 ⊆
𝑁 describe the available labels for nodes and edges respectively,

and 𝑃𝑉 , 𝑃𝐸 describe the available properties for nodes and edges

respectively. 𝐿𝑉 , 𝐿𝐸 are sets that contain valid, randomly generated,

strings. 𝑃𝑉 (𝑃𝐸) is a function of type 𝐿𝑉 ↦→ P(𝐿 × 𝑇) (𝐿𝐸 ↦→
P(𝐿 ×𝑇)) where P denotes the power set. This mapping describes

which properties (i.e., string-type combinations) can be found on

which label.

Consider the graph of Figure 1. It has the metamodel 𝑀 =

(𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸) with the following components:

𝐿𝑉 = {Person, Company, Technology}
𝐿𝐸 = {LIKES, WORKS_FOR, IS_FRIENDS_WITH}
𝑃𝑉 = {(Person, {(name, String)}),

(Company, {(name, String)}),
(Technology, {(type, String)})}

𝑃𝐸 = {(WORKS_FOR, {(until, Date)}),
(IS_FRIENDS_WITH, {(since, Date)}),
(LIKES, {})}

(1)

Note that, since the edge label LIKES lacks properties, we use

an empty set to denote its properties. With this information, the

schema of a graph is completely described. GDBMeter can, based

on this information, generate random graphs or, as is used in some

cases, generate a GDBMS-specific schema.

Listing 4: We describe the metamodel using two abstract
classes. One class represents the schema, and the other is an
entity that can be either a node or an edge. For each entity, we
store its associated name as well as the corresponding prop-
erties and types. The actual implementation is more complex
since we have to support different data types depending on
the GDBMS.

1 class Schema {
2 Map<String, Entity> nodeSchema;
3 Map<String, Entity> relationshipSchema;
4 }
5
6 class Entity {
7 Map<String, Type> availableProperties;
8 }

Listing 4 shows the conceptual components of the meta-

model. 𝐿𝑉 and 𝐿𝐸 are the key sets of the maps in the Schema
class. The mappings 𝑃𝑉 and 𝑃𝐸 are represented by the field

availableProperties in the Entity class. To generate a new

metamodel 𝑀 , GDBMeter first generates 𝐿𝑉 and 𝐿𝐸 . It generates

random, valid, names for the labels. Then, 𝑃𝑉 and 𝑃𝐸 are created by

generating random name-type combinations. For some GDBMSs,

the property names have to be unique and this has to be taken into

consideration during the metamodel generation.

3.2 Graph Generation
Based on the metamodel𝑀 , the graph 𝐺 is generated. To this end,

GDBMeter generates a set of vertices 𝑉 that adhere to the meta-

model𝑀 by following the label-property mapping. For each of the

|𝑉 ×𝑉 | potential directed edges, we generate an edge with a fixed

probability. The edges also adhere to the metamodel 𝑀 by only

generating valid labels and respective properties.

Algorithm 1 describes the graph generation algorithm. Lines 1–9

describe how we generate a set of properties. To do so, we iterate

over all elements (name-type combinations) of the schema. For each

entry, we generate a random boolean value, if it is true, we include

the current property in our subset. The returned value 𝑃 consists of

name-value pairs, where the first component is the property name

and the second one is its value.

Lines 10–20 describe how we generate nodes and edges. In both

functions, we first sample a random label. Then, based on the se-

lected label, we select the available properties and generate a subset

of all the available properties. This is done using the algorithm

described above. Finally, the node (edge) is constructed and re-

turned. For the edge construction, 𝑢 and 𝑣 describe the outgoing

and incoming nodes respectively.

Finally, lines 30–34 describe how the graph can be generated

based on the metamodel 𝑀 . First, 𝑛 nodes are created using the

Testing Graph Database Engines via Query Partitioning ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Algorithm 1 The graph generation algorithm which consists of

four different functions.

1: function makeProperties(𝑆)

2: 𝑃 ← ∅
3: for all (𝑛, 𝑡) ∈ 𝑆 do
4: if RandomBoolean() then
5: 𝑃 ← 𝑃 ∪ {(𝑛, generateValue(𝑡))}
6: end if
7: end for
8: return 𝑃

9: end function
10: function makeNode(𝐿𝑉 , 𝑃𝑉)

11: 𝑙
𝑅← 𝐿𝑉

12: 𝑝 ← makeProperties(𝑃𝑉 (𝑙))
13: return Node(𝑙, 𝑝)
14: end function
15: function makeEdge(𝐿𝐸 , 𝑃𝐸 , 𝑢, 𝑣)

16: 𝑙
𝑅← 𝐿𝐸

17: 𝑝 ← makeProperties(𝑃𝐸 (𝑙))
18: return Edge(𝑙, 𝑝,𝑢, 𝑣)
19: end function
20: function makeGraph(𝑀)

21: (𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸) ← 𝑀

22: 𝑉 , 𝐸 ← ∅
23: loop 𝑛 times

24: 𝑉 ← 𝑉 ∪ {makeNode(𝐿𝑉 , 𝑃𝑉)}
25: end loop
26: for all 𝑢 ∈ 𝑉 do
27: for all 𝑣 ∈ 𝑉 do
28: if RandomBoolean() then
29: 𝐸 ← 𝐸 ∪ {makeEdge(𝐿𝐸 , 𝑃𝐸 , 𝑢, 𝑣)}
30: end if
31: end for
32: end for
33: return Graph(𝑉 , 𝐸)
34: end function

function described before. The number of nodes𝑛 can be configured;

in our implementation, it is set to a random value between 1 and

6, which we found to work well empirically. Once all the nodes

are generated, we loop over all possible edges (i.e., every possible

combination of start and end nodes). Then, based on a random

variable with a binomial distribution with 𝑝 = 0.5, we generate the

edges. Finally, the graph is constructed and returned.

3.3 Database Generation
The database generator is used to generate random statements that

manipulate the database state. For each statement kind, we define

an empirically-determined interval that describes the number of

statements to be generated. GDBMeter iterates over all available

kinds of statements and generates a random integer 𝑛 in the spec-

ified interval. This integer 𝑛 is then used to generate exactly 𝑛

queries of this kind using a statement generator implementation.

The generated statements are executed in a random order in be-

tween the create statements of the actual graph. The result of this

random process is a graph database in a deterministic state which

is ready to be tested by our test oracles. Since the query languages

vary between GDBMS, this component must be GDBMS-specific.

Table 1 shows the possible statement kinds for Neo4j.

Many statements require one or multiple expressions. Thus,

we use an expression generator. This generator randomly selects

applicable operators, functions, and leaf nodes (i.e., variables and
constants). Once a maximum depth is reached, only leaf nodes are

considered. This ensures that the expressions generated are not

excessively large. Constants are generated using a random data

generator which is biased to generate boundary values, such as

minimum and maximum integers.

3.4 Ternary Logic Partitioning
Ternary Logic Partitioning is an instance of the general partition

strategy idea proposed by Rigger and Su [30]. The high-level idea of

their approach is that a predicate (i.e., an expression of type boolean
used as a filter) on a node or edge must evaluate to TRUE, FALSE or

NULL. A given query can therefore be partitioned into three new

queries that return disjoint subsets of the original result set. One

query selects all nodes and edges where the predicate 𝑝 holds, one

query where 𝑝 does not hold, and one for which 𝑝 evaluates to NULL.
To implement these three queries, we generate three predicates:

𝑝 , NOT 𝑝 , and 𝑝 IS NULL. Each predicate is then used once in a

filter clause to partition the original result set. These predicates are

randomly generated.

Some GDBMSs lack support for NULL values. For these, the par-

titioning involves only two disjoint subsets. Algorithm 2 shows our

adapted version of TLP. First, we generate a predicate 𝑃 and a query

𝑄 . Then, the partitioning queries (𝑅, 𝑆,𝑇) are generated based on

the three predicate variants of 𝑃 . Finally, we select the nodes using

𝑄 as well as 𝑅, 𝑆,𝑇 and validate that these two sets are the same. If

they are not, we have detected a bug.

Algorithm 2 The Query Partitioning oracle.

1: functionQueryPartitioning(𝑀)

2: 𝑃 ← generateExpression(𝑀 , boolean) ⊲ 𝑃 is a predicate

3: 𝑄 ← generateSelectionQuery(𝑀)

4: 𝑅 ← modifyFilterClause(𝑄 , 𝑃)

5: 𝑆 ← modifyFilterClause(𝑄 , ¬𝑃)
6: ⊲ 𝑇 is only generated if the GDBMS supports NULL values

7: 𝑇 ← modifyFilterClause(𝑄 , 𝑃 IS NULL)

8: return SelectNodes(𝑅, 𝑆,𝑇)
!

= SelectNodes(𝑄)

9: end function

4 IMPLEMENTATION
We implemented our approach as a tool called GDBMeter. Cur-

rently, it supports testing Neo4j, RedisGraph, and Janusgraph.

We implemented it in about 6,000 lines of code (LOC). An

implementation of the TLP oracle requires only about 150

LOC. The project is open-source and publicly available at

https://github.com/gdbmeter/gdbmeter.

The random statement and query generation of GDBMeter pro-

duces syntactically valid statements, which, however, can result

https://github.com/gdbmeter/gdbmeter

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

Table 1: The different query kinds of Neo4j supported by GDBMeter and simplified example queries.

Kind (Keyword) Example

CREATE CREATE (:LABEL {property: true})

CREATE (TEXT) INDEX CREATE INDEX name FOR (n:LABEL) ON (n.property)

DELETE MATCH (n:LABEL) DELETE n

DROP INDEX DROP INDEX name IF EXISTS

REMOVE MATCH (n:LABEL) REMOVE n.property

SET MATCH (n:LABEL) SET n.property = false

Table 2: We tested the most popular GDBMSs. All numbers
are the latest as of September 2022.

GDBMS DB-Engines
2

GitHub LOC
3

First Release

Neo4j 1 10.1k 468k 2007

RedisGraph - 1.6k 44k 2018

JanusGraph 7 4.6k 93k 2017

in semantic errors when being executed. For instance, a division

by zero can result in an error. Such semantic errors are difficult to

avoid statically. Thus, we annotated each statement kind with a

list of so-called expected errors (i.e., errors that happen at run time

and are not classified as bugs). If a GDBMS encounters such an ex-

pected error during execution, GDBMeter would not report the test

case as bug-inducing. Determining whether an error is expected

requires domain knowledge. Unlike TLP, which only reports real

bugs, omitting an expected error might raise a false alarm.

5 EVALUATION
In our evaluation, we aimed to evaluate the effectiveness of GDB-

Meter in finding new bugs in GDBMSs as well as compare it with

the state-of-the-art approach Grand [38].

Tested GDBMSs. We considered three GDBMSs, Neo4j, Redis-

graph, and JanusGraph. Table 2 demonstrates their popularity and

importance based on a widely-used ranking as well as the number

of GitHub stars. Neo4j is the most popular, widely-used GDBMS,

and the largest GDBMS of the three GDBMSs that we considered.

It can be queried using the Cypher query language. Similarly, Re-

disGraph, an extension of the well-known NoSQL database Redis,

uses the Cypher query language. While the RedisGraph developers

aim to adhere to the openCypher standard [11], RedisGraph only

supports a subset of Cypher features. JanusGraph uses the Tinker-

Pop graph computing framework [3] and the underlying graph

traversal language Gremlin. Moreover, JanusGraph supports differ-

ent index backends such as Apache Lucene [2] and Elasticsearch

[5]. We tested the latest available versions of these GDBMSs. For

Neo4j, we tested versions 4.4.8 and 4.4.9. We tested the develop-

ment versions of RedisGraph (up to commit 166a643f3), which is

included in version 2.8.19. For JanusGraph, we tested version 0.6.2.

2
A database ranking based on various factors: https://db-

engines.com/en/ranking/graph+dbms

3
These numbers are best-effort estimates. We calculated them using cloc while exclud-

ing tests.

Test environment. We used a 4-core Intel i7-4790K CPU and

16 GB of memory running Arch Linux 5.19 for our bug finding

effort. To run GDBMeter, we used Java 11 with the JVM flag

OmitStackTraceInFastThrow.4

5.1 Effectiveness
Study methodology and challenges. We tested the GDBMSs over a

period of roughly three months aiming to report unique, previously

unknown bugs. Once we identified a potential bug, we reduced the

bug-inducing test case to a minimal version [37]. Next, we searched

the bug tracker of these GDBMSs to prevent reporting the issue

that had already been reported. Finally, if we believed that the bug

was likely unknown, we reported it to the issue tracker. To avoid

duplicate reports, after reporting a bug, we modified GDBMeter to

avoid generating the problematic pattern until the bug was fixed.

Found bugs. Table 3 shows an overview of the bugs and their

statuses. Overall, we reported 43 bugs. Of these, we consider 40 bugs

as real, previously unknown, unique bugs, 35 of which have been

confirmed by the developers. Of the confirmed bugs, 27 bugs have

been fixed by the developers. This demonstrates that the majority

of our bugs were deemed important by the developers. We reported

2 duplicate bugs; one of these was due to GDBMeter generating

two seemingly unrelated test cases, which had the same root cause.

Table 4 shows the types of the bugs that we found. Overall, 14

were logic bugs that we aimed to find. GDBMeter also found a total

of 10 crash bugs, which are bugs that caused the server to exit

while executing a query. All but one of these bugs were found in

RedisGraph. Although Neo4J is written in Java, we considered a

bug that causes the application to exit with a stack overflow error as

a crash. Some of the crashes were due to illegal memory accesses—

RedisGraph is implemented in the C language, which is known to

be vulnerable to such bugs. We reported 16 error bugs, that is, bugs

that caused an unexpected internal error. Such bugs allowed the

GDBMSs to continue processing subsequent queries. Finally, 1 bug

that we found caused the GDBMS to hang indefinitely. GDBMeter

also found a bug in the Java client for Redis, called Jedis [8], which

did not handle the double values for infinity and Not a Number

(NaN) correctly.

Developer Feedback. We received highly encouraging feedback

on our work. The developers of RedisGraph informed us that they

4
Exception classes that are thrown multiple times are optimized by the JIT com-

piler in such a way that the stacktrace is removed. This flag prevents this

behaviour and ensures proper traceability. For more information on this see:

https://github.com/neo4j/neo4j/issues/12874

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/neo4j/neo4j/issues/12874

Testing Graph Database Engines via Query Partitioning ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 3: We found 40 previously unknown bugs, 27 of which
have been fixed. One bug has been found in Jedis which is
not a GDBMS and therefore not listed here.

Closed

GDBMS Fixed Verified Intended Duplicate

Neo4j 10 13 3 2

RedisGraph 15 20 0 0

JanusGraph 1 1 0 0

Total 26 34 3 2

Table 4: Types of the bugs that we found in Neo4J, Redis-
Graph, and JanusGraph. The client bug was in Jedis, a Java
client for Redis.

GDBMS Logic Crash Error Hang Client

Neo4J 5 1 12 0 -

RedisGraph 9 9 2 1 -

JanusGraph 1 0 2 0 -

Total 15 10 16 1 1

are planning to integrate GDBMeter into their testing process to

extensively test their database. They stressed the usefulness of

GDBMeter with respect to finding clear logic bugs: “We’ve seen
several academic teams developing tools for finding bugs in graph
databases, butmost of the time, the queries are generated using fuzzing
techniques and seem synthetic. This is not a problem by any means,
but we found that researchers couldn’t identify the root cause of the
issues detected. If I understand correctly, your method has the potential
to make this task easier.”

The developer of Jedis appreciated that we provided a helpful

test case that made reproducing the bug easier for them. Most bugs

that we reported for RedisGraph were fixed within a few days,

which could be an indicator of the importance of the bugs.

5.2 Comparison with Grand
We wanted to compare our approach with Grand [38], the state-of-

the-art approach to finding bugs in GDBMSs, which is based on

differential testing. Grand has found a total of 21 bugs, 7 of which

have been fixed. However, in our initial trial runs, we found that

Grand reported many false alarms. This is a severe limitation, as

analyzing the potential bug-inducing test cases requires manual

effort. We did not find this limitation explicitly mentioned in the

paper, which also lacks an evaluation of the false alarm rate.
5
Since

TLP only reports real bugs, our main goal was to evaluate the

false alarm rate in Grand. As the false alarm rate was prohibitively

high, we could not conduct a thorough comparison between the

effectiveness of GDBMeter and Grand.

5
The paper hints that not all issues reported indicate real bugs: “Each reported discrep-
ancy is logged as a potential logic bug. For each bug reported by Grand, we manually
reproduce and analyze it, to verify whether it is a real logic bug." Furthermore, the paper

mentions that “After carefully analyzing 709 discrepancies, we obtain 21 logic bugs in
the six tested Gremlin-based GDBs." without clarifying whether the remaining 688 test

cases were false alarms or duplicate bug-inducing test cases.

Table 5: A sample of 30 potential bugs that Grand found in
10,000 queries grouped by exception type.

Type Number

ClassCastException (to Comparable) 11

IllegalArgumentException 8

Parsing Error 6

NumberFormatException 3

IllegalStateException 1

NoIndexException 3

Analysis and results. We executed Grand for 10 iterations, each

of which generated 1,000 queries. Grand reported 615 of the 10,000

queries to be potential bugs. We randomly selected 30 potentially

bug-inducing test cases, and analyzed them. Differential testing

reports only the difference in the output, not the issue or root cause

of the issue. Based on our judgment, we classified all of these 30

issues as false alarms. The discrepancies were due to differences in

exception handling, as shown in Table 5. For instance, 11 of those 30

reported bugs were due to ClassCastException being thrown for

HugeGraph and TinkerGraph but not for JanusGraph. In one case,

HugeGraph threw an IllegalStateException, while the other

two GDBMSs simply returned null. 6 of the potential bugs were
due to illegal symbols triggering different parsing errors.

We reported this issue illustrated on three examples on the

project’s issue tracker on GitHub in September 2022.
6
The authors

responded in the issue that some of these false alarms were due to

bugs in their tool, and others are cases that Grand considers as bugs

due to the difference in their outputs: “Some of exceptions are caused
by bugs in our tool. For example, we should compare the detailed ex-
ecption messages Not a legal range: [0, -7248751818768758783] instead
of the exception, or maybe we should avoid to generate an odd string
value. We will fix them. The third exception is expected in Grand. We
think they are bugs due to the different outputs. Actually, they are
caused by lack of logic implementation."

We further inspected the 21 bugs reported by the Grand authors,

which they all classified as logic bugs. Different from previous

work [29, 30], which defined logic bugs as bugs that cause an in-

correct result to be computed, the Grand authors considered also

unexpected errors as logic bugs.
7
We found that 16 bugs were due

to internal errors, and 2 issue links referred to pull requests created

by Neo4J developers in 2014. We believe that most such internal

errors can be found with an implicit test oracle, such as for the

error bugs that we found. Only 3 issues were due to differences in

the query’s result,
8
which we considered as logic bugs in this work.

None of these 3 issues has been addressed by code changes; one

bug was counted as fixed by the Grand authors due to an update to

the documentation.
9

6
The issue can be found at https://github.com/choeoe/Grand/issues/1

7
The paper mentions the following: “Similar to relational database systems, GDBs also
suffer from logic bugs, in which a query returns an unexpected result without crashing
the GDBs. The unexpected results could be incorrect query results (e.g., omitting a vertex
in a graph), or unexpected errors."
8
See https://github.com/apache/incubator-hugegraph/issues/1586, https://github.com/

apache/incubator-hugegraph/issues/1734, and https://issues.apache.org/jira/browse/

TINKERPOP-2603

9
See https://issues.apache.org/jira/browse/TINKERPOP-2603.

https://github.com/choeoe/Grand/issues/1
https://github.com/apache/incubator-hugegraph/issues/1586
https://github.com/apache/incubator-hugegraph/issues/1734
https://github.com/apache/incubator-hugegraph/issues/1734
https://issues.apache.org/jira/browse/TINKERPOP-2603
https://issues.apache.org/jira/browse/TINKERPOP-2603
https://issues.apache.org/jira/browse/TINKERPOP-2603

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

6 SELECTED BUGS
This section gives an overview of the interesting bugs we found.

Note that this selection is necessarily biased. For brevity, we show

only reduced test cases that demonstrate the underlying core prob-

lem, rather than the original test cases that found the bugs. The

original queries were typically significantly more complex and

contained statements irrelevant to reproduce the bugs.

NaN value optimization bug in Neo4j. Listing 5 shows a query

that produces the result NaN, false, false. The first value is Not
a Number (NaN) [1]. A comparison with NaN produces the value

false which works as expected in the second expression. The last

expression is where the bug occurs. Neo4j incorrectly assumes that

it can change NOT(0.0 < (0.0/0.0)) into 0.0 >= (0.0/0.0)
which then evaluates to false as any comparison with NaN should.

This assumption is incorrect, because NOT(false) is true and,

therefore, this is a case of an incorrect optimization. This exam-

ple shows that handling NaN values correctly can be challenging,

especially when combined with query optimizations.

Listing 5: Neo4j incorrectly replaces the logical not operation
when an operand is not a number (NaN).

1 RETURN (0.0/0.0), 0.0 < (0.0/0.0), NOT(0.0 < (0.0/0.0))

Neo4j string comparison bug. Listing 6 shows a set of queries

that demonstrate a logic bug. First, a node is created with the prop-

erty p set to "test". Then we ask for all nodes where property p
starts with its lTrim value. lTrim removes leading white spaces

from an expression. In our case, it leaves the value unchanged, and

"test" STARTS WITH "test" evaluates to true. That is why line 2
returns a count of 1. We then create a normal index on the property

p. Finally, we query for the same nodes again, but this time the

count is 0. This test case demonstrates incorrect behavior related

to indices and the function lTrim.

Listing 6: Neo4j does not return a node that is intended to be
part of the result set when an index is present.

1 CREATE (:L {p:"test"})
2 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN

COUNT(n)↩→

3 CREATE INDEX FOR (n:L) ON (n.p)
4 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN

COUNT(n)↩→

RedisGraph NaN value comparison bugs. Listing 7 shows a col-
lection of comparison queries written for RedisGraph that return

incorrect results. Each of them returns the exact negation of the

truth value it is supposed to return according to the IEEE Standard

for Floating-Point Arithmetic [1]. This example shows that even

simple comparisons involving NaN values can be implemented

incorrectly. These incorrect results could occur in more complex

queries and result in incorrect result sets.

Listing 7: RedisGraph handles comparisons with NaN values
incorrectly.

1 RETURN 0.0/0.0 = 1
2 RETURN 0.0/0.0 <> 1
3 RETURN 0.0/0.0 <= 1
4 RETURN 0.0/0.0 >= 1

RedisGraph distance query results in an infinite loop. Listing 8

shows a bug that is not considered a logic bug but shows that GDB-

Meter is also able to detect other interesting bugs. RedisGraph uses

RedisSearch [13] as its index backend. To answer certain queries

that involve indices, it asks RedisSearch for an answer. In this case,

the second query involves the distance, a function which calcu-

lates the distance between two points, and since an index is present

RedisSearch is consulted. However, since the comparison involves

a negative value on one side, RedisSearch runs into an endless

loop and never returns. This bug also occurs even when no node

is present. This example shows that the bugs found using GDB-

Meter have an impact on other projects too (e.g., the ones that use
RedisSearch as an index backend).

Listing 8: RedisGraph runs into an infinite loop when com-
paring a distance to a negative value.

1 CREATE INDEX FOR (n:L) ON (n.p)
2
3 MATCH (n:L)
4 WHERE distance(point({ longitude: 1, latitude: 1 }),

n.p) <= -1↩→

5 RETURN n

RedisGraph null value in WHERE clause bug. Listing 9 shows a
logic bug related to null values in WHERE clauses. The expression
(null <> false) XOR true evaluates to null because the left side
of the XOR is already null. When the WHERE clause is not true, then
COUNT(n) should evaluate to zero. However, in this example, Redis-

Graph returns a COUNT(n) of one because it incorrectly assumes

that the expression is true.

Listing 9: RedisGraph returns a node although the WHERE
clause evaluates to null.

1 CREATE (:L)
2 MATCH (n:L) WHERE (null <> false) XOR true RETURN

COUNT(n)↩→

JanusGraph mixed index where one property is not present bug.
Listing 10 shows a logic bug related to mixed indices of multiple

properties. A mixed index can be used for lookups on any combina-

tion of indexed keys and supports multiple condition predicates [7].

Lines 1-3 create an appropriate schema consisting of two properties

p and q. We then index those two properties on label L through a

Testing Graph Database Engines via Query Partitioning ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

mixed index backend. After creating a node with label L and prop-

erty p set to 1, we would expect the query of line 10 to return a

count of 0 since there is no node with label q. Instead, JanusGraph
returns a count of 1 which is incorrect.

Listing 10: JanusGraph returns a node when a mixed index
is present, although the condition does not match said node.

1 l = makeVertexLabel("L").make()
2 p = makePropertyKey("p").dataType(Integer.class).make()
3 q = makePropertyKey("q").dataType(Integer.class).make()
4
5 buildIndex().addKey(p).addKey(q).indexOnly(l)
6 .buildMixedIndex();
7
8 g.addV("L").property("p", 1)
9
10 g.V().hasLabel("L").has("q").count() // 0
11 g.V().hasLabel("L").has("q", not(eq(2))).count() // 1

7 DISCUSSION
Challenges. One challenge that we faced during the testing of

GDBMS, RedisGraph in particular, was that we were unable to re-

produce a class of bugs. The bugs appeared to happen sporadically

during the execution of seemingly unrelated queries. We then re-

ported the bug by providing the stack trace as well as any other

relevant information. Eventually, the developers of RedisGraph

were able to find that one bug occurred due to internal locks not

being held and a respective invariant being violated.

Limitations. Our testing could use more complex features of the

query languages that we support (i.e., Cypher and Gremlin). We

have focused on the most important features such as Create, Read,

Update and Delete (CRUD) operations as well as indexing features.

We found that RedisGraph has some peculiarities when printing

floating-point numbers
10

which made it difficult to compare them

exactly to our expected result. Because of this, we used an epsilon

when comparing floating-point numbers during the execution of

our oracle.

8 RELATEDWORK
Differential testing of DBMS. Differential testing [27] is a widely-

used testing technique that is applicable when multiple systems

implement the same behavior for a set of inputs. Its core idea is to

pass a common input and if the systems’ outputs disagree, a bug

in at least one of the systems has been detected. In the context of

data-centric systems, this technique was first proposed for testing

RDBMSs and implemented as a system called RAGS [33]. Other

examples include CYNTHIA [34] for testing Object-Relational Map-

ping (ORM) systems, DiffStream [25] for testing distributed stream

processing systems, and APOLLO [24] for testing for performance

regressions of database systems.

Grand [38] realized differential testing for GDBMSs based on

the insight that many GDBMSs support the Gremlin language. For

10
For more information see: https://github.com/RedisGraph/RedisGraph/issues/2417

test case generation, Grand uses a model-based approach to gener-

ate valid Gremlin queries. Besides Grand, GDsmith [26] has been

described as an approach to test GDBMSs in a technical report.

GDsmith applies differential testing for systems that support the

Cypher query language, which is another popular query language.

For test case generation, GDsmith uses skeleton generation and

completion to generate semantically valid Cypher queries. GDsmith

is not publicly available, which is why we could not compare with

it. The major drawback of differential testing in this context is

that various graph query languages exist, so Grand and GDsmith

can only be applied to systems that support Gremlin and Cypher,

respectively. Furthermore, even minor differences between the im-

plementation of such query languages cause false alarms, as shown

in Section 5.2. TLP addresses these limitations and is applicable to

testing a single GDBMSs without reporting false alarms.

Metamorphic testing. Metamorphic testing [19] addresses the

test oracle problem by, based on an input and output of a system,

deriving a new input and a test oracle that validates the new output

by comparing it with the initial output. The approach relies on

finding an effectivemetamorphic relation, which infers the expected

results. Ternary Logic Partitioning [30], first proposed for testing

RDBMSs, is a metamorphic testing approach. The authors used is

to find 175 bugs in widely used RDBMSs. The tool in which they

implemented the approach, SQLancer, is highly popular on GitHub

and widely used by companies. In this work, we have demonstrated

that this technique is also applicable in the context of GDBMSs.

TLP’s key advantage is that, unlike differential testing, it raises no

false alarms. To the best of our knowledge, no other metamorphic

testing approaches have been proposed for testing GDBMS.

9 CONCLUSION
This paper has demonstrated that Ternary Logic Partitioning

(TLP), a testing approach that was previously proposed for testing

RDBMSs, can also be applied to testing GDBMSs. In our evaluation

on three widely-used GDBMSs, we have found and reported a total

of 43 bugs, 14 of which are logic bugs. Despite Neo4j and Janus-

Graph having been tested extensively by the state-of-the-art, we

found and reported 18 additional bugs in these GDBMSs. Unlike

differential testing, TLP avoids false alarms, enabling running it

as a fully automated approach. In future work, we expect that this

simple, yet effective approach and the practical tool will be used to

test other GDBMSs and be integrated into their testing processes.

ACKNOWLEDGMENTS
We want to thank the developers of the GDBMSs for verifying

and addressing our bug reports as well as their feedback to our

work. Furthermore, we are grateful for the feedback received by

the members of the AST Lab at ETH Zürich. Manuel Rigger was

supported by a Ministry of Education (MOE) Academic Research

Fund (AcRF) Tier 1 grant.

https://github.com/RedisGraph/RedisGraph/issues/2417

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229

[2] 2022. Apache Lucene. https://lucene.apache.org/. Accessed: September 20, 2022.

[3] 2022. Apache TinkerPop. https://tinkerpop.apache.org/. Accessed: August 10,

2022.

[4] 2022. Apache TinkerPop Documentation. https://tinkerpop.apache.org/docs/

current/reference/. Accessed: September 20, 2022.

[5] 2022. ElasticSearch. https://www.elastic.co/elasticsearch/. Accessed: September

20, 2022.

[6] 2022. JanusGraph. https://janusgraph.org/. Accessed: August 2, 2022.

[7] 2022. JanusGraph, Index Management. https://docs.janusgraph.org/schema/

index-management/index-performance/. Accessed: September 20, 2022.

[8] 2022. Jedis. https://github.com/redis/jedis. Accessed: September 11, 2022.

[9] 2022. Memgraph. https://memgraph.com/. Accessed: August 2, 2022.

[10] 2022. Neo4J. https://neo4j.com/. Accessed: August 2, 2022.

[11] 2022. openCypher. https://opencypher.org/. Accessed: August 10, 2022.

[12] 2022. RedisGraph. https://redis.io/docs/stack/graph/. Accessed: August 2, 2022.

[13] 2022. RedisSearch. https://github.com/RediSearch/RediSearch. Accessed: Sep-

tember 6, 2022.

[14] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages. https:

//doi.org/10.1145/3104031

[15] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages. https:

//doi.org/10.1145/3104031

[16] Marcelo Arenas, Claudio Gutierrez, and Juan F. Sequeda. 2021. Querying in

the Age of Graph Databases and Knowledge Graphs. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, 2821–2828.

[17] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal Pod-

stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demysti-

fying Graph Databases: Analysis and Taxonomy of Data Organization, System

Designs, and Graph Queries. CoRR abs/1910.09017 (2019). arXiv:1910.09017

http://arxiv.org/abs/1910.09017

[18] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen:

Generating Query-Aware Test Databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (Beijing, China) (SIGMOD ’07).
Association for Computing Machinery, New York, NY, USA, 341–352. https:

//doi.org/10.1145/1247480.1247520

[19] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:

a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[20] Claudio de la Riva, María José Suárez-Cabal, and Javier Tuya. 2010. Constraint-

Based Test Database Generation for SQL Queries. In Proceedings of the 5th
Workshop on Automation of Software Test (Cape Town, South Africa) (AST ’10).
Association for Computing Machinery, New York, NY, USA, 67–74. https:

//doi.org/10.1145/1808266.1808276

[21] Facebook, Inc. 2021. GraphQL. Working Draft, May. 2021. Online at https:

//spec.graphql.org/.

[22] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

In Proceedings of the 2018 International Conference on Management of Data (Hous-
ton, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York,

NY, USA, 1433–1445. https://doi.org/10.1145/3183713.3190657

[23] Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and realistic data

generation. In Proceedings of the 32nd international conference on Very large data
bases. 1243–1246.

[24] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019.

APOLLO: Automatic Detection and Diagnosis of Performance Regressions

in Database Systems. Proc. VLDB Endow. 13, 1 (sep 2019), 57–70. https:

//doi.org/10.14778/3357377.3357382

[25] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2020. Diff-

Stream: Differential Output Testing for Stream Processing Programs. Proc.
ACM Program. Lang. 4, OOPSLA, Article 153 (nov 2020), 29 pages. https:

//doi.org/10.1145/3428221

[26] Wei Lin, Ziyue Hua, Luyao Ren, Zongyang Li, Lu Zhang, and Tao Xie. 2022.

GDsmith: Detecting Bugs in Graph Database Engines. https://doi.org/10.48550/

ARXIV.2206.08530

[27] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[28] Rob Reagan. 2018. Cosmos DB. InWeb Applications on Azure. Springer, 187–255.
[29] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database

engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140–1152.

[30] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via

query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[31] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[32] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language

(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. ACM. https://doi.org/10.1145/2815072.2815073

[33] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
the 24rd International Conference on Very Large Data Bases (VLDB ’98). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 618–622.

[34] Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis, Dimitris Mitropou-

los, and Diomidis Spinellis. 2021. Data-Oriented Differential Testing of Object-

Relational Mapping Systems. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 1535–1547. https://doi.org/10.1109/ICSE43902.2021.

00137

[35] Sakshi Srivastava and Anil Kumar Singh. 2022. Fraud detection in the distributed

graph database. Cluster Computing (2022). https://doi.org/10.1007/s10586-022-

03540-3

[36] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empirical

Study on Recent Graph Database Systems. Springer International Publishing,

328–340.

[37] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?

SIGSOFT Softw. Eng. Notes 24, 6 (oct 1999), 253–267. https://doi.org/10.1145/

318774.318946

[38] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,

Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based

Graph Database Systems via Randomized Differential Testing. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New

York, NY, USA, 302–313. https://doi.org/10.1145/3533767.3534409

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1109/IEEESTD.2019.8766229
https://lucene.apache.org/
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/docs/current/reference/
https://tinkerpop.apache.org/docs/current/reference/
https://www.elastic.co/elasticsearch/
https://janusgraph.org/
https://docs.janusgraph.org/schema/index-management/index-performance/
https://docs.janusgraph.org/schema/index-management/index-performance/
https://github.com/redis/jedis
https://memgraph.com/
https://neo4j.com/
https://opencypher.org/
https://redis.io/docs/stack/graph/
https://github.com/RediSearch/RediSearch
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://arxiv.org/abs/1910.09017
http://arxiv.org/abs/1910.09017
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1808266.1808276
https://doi.org/10.1145/1808266.1808276
https://spec.graphql.org/
https://spec.graphql.org/
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.48550/ARXIV.2206.08530
https://doi.org/10.48550/ARXIV.2206.08530
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/ICSE43902.2021.00137
https://doi.org/10.1109/ICSE43902.2021.00137
https://doi.org/10.1007/s10586-022-03540-3
https://doi.org/10.1007/s10586-022-03540-3
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/3533767.3534409

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Metamodel Generation
	3.2 Graph Generation
	3.3 Database Generation
	3.4 Ternary Logic Partitioning

	4 Implementation
	5 Evaluation
	5.1 Effectiveness
	5.2 Comparison with Grand

	6 Selected Bugs
	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References

